

OpenSatCom
Development of Open Source
tools for SatCom constellation
analysis
First deliverable

Author: Juan Luis Cano Rodríguez <hello@juanlu.space>
Publication date: 2020-11-17
Last modification date: 2020-12-14

Introduction

One of the most widely used exchange formats for orbital information are Two-line Element sets

(TLEs). TLEs for all known artificial satellites, as well as several large space debris objects, are

produced by the United States Armed Forces and disseminated to the public, therefore making

them easily available for consumers. These TLEs are meant to be propagated with SGP4, one of

the Simplified General Perturbations models published by the United States Department of

Defense. The source code for these analytic models, which offer a good tradeoff between

running time and accuracy, was made public, again democratizing its usage.

However, “TLEs were designed [...] at a time when both bandwidth for transmission or digital

storage were extremely limited”, and as a result they exhibit several limitations, like poor legibility

and limited accuracy for the variables. CelesTrak, the main public source of general perturbations

orbital data, announced in May 2020 that they would start using the Orbit Mean-Elements

Message format (OMM) “that is part of the Orbit Data Messages (ODM) Recommended Standard

CCSDS 502.0-B-2 developed by The Consultative Committee for Space Data Systems (CCSDS)

in November 2009”. OMMs contains all the information available in TLEs and can include extra

data, while being free from the character limits imposed by the previous format.

For SatCom constellations, TLEs have a dual mission: on one hand, they provide an invaluable

tool for long term simulation, since SGP4 can capture the most important perturbation effects

while retaining good performance. And on the other hand, they are a low cost monitoring tool

that can be leveraged without the need to deploy any tracking infrastructure.

1

Overview

As part of the Development of Open Source tools for SatCom constellation analysis, one of the

sub-activities of the OpenSatCom initiative implemented by Libre Space Foundation and Inno3

for the European Space Agency, the first proposed step was the “exploration of ongoing and

complete works to read and write CCSDS OMM format”, which is described in this document.

To this end, we selected a list of free/open source libraries for TLE/GP handling and orbit

propagation, mostly focused on the Python programming language, and assessed their

capabilities. We devoted special attention to python-sgp4, since it is the most widely used pure

Python library for propagating TLEs with SGP4. For the rest of the libraries we performed a brief

assessment and included our conclusions in this report.

Selected libraries

The Appendix includes other related libraries that were excluded from the analysis.

1 In master branch or equivalent
2 Unless noted, last month downloads as obtained from https://pypistats.org/packages/
3 Total downloads from conda as obtained from https://anaconda.org/conda-forge/orekit Notice that
probably conda is not the canonical way to obtain Orekit, therefore these numbers are under-reported, and
also that the scope of the project is much broader and therefore cannot be compared to the other ones.

2

Name Source code License Last commit 1 Downloads
 2

python-sgp4 https://github.com/brandon-rhodes
/python-sgp4

MIT 2020-11-14 125 895

Orekit https://gitlab.orekit.org/orekit/oreki
t

Apache 2020-11-17 165 254 3

beyond https://github.com/galactics/beyon
d

MIT 2020-11-12 3 906

python-satellitetl
e

https://gitlab.com/librespacefounda
tion/python-satellitetle

MIT 2020-07-29 276

oacmpy https://gitlab.com/jorispio/ccsds2cz
ml

MIT 2020-05-19 12

ccsds-ndm https://github.com/egemenimre/cc
sds-ndm

GPLv3 2020-12-06 166

https://pypistats.org/packages/
https://anaconda.org/conda-forge/orekit
https://github.com/brandon-rhodes/python-sgp4
https://github.com/brandon-rhodes/python-sgp4
https://gitlab.orekit.org/orekit/orekit/
https://gitlab.orekit.org/orekit/orekit/
https://github.com/galactics/beyond/
https://github.com/galactics/beyond/
https://gitlab.com/librespacefoundation/python-satellitetle
https://gitlab.com/librespacefoundation/python-satellitetle
https://gitlab.com/jorispio/ccsds2czml
https://gitlab.com/jorispio/ccsds2czml
https://github.com/egemenimre/ccsds-ndm
https://github.com/egemenimre/ccsds-ndm

Analysis of capabilities

python-sgp4 (MIT)

python-sgp4 is the most downloaded Python library for propagating TLEs using SGP4: its

implementation of SGP4, directly ported from the public C++ version by the Center for Space

Standards and Innovation, has been battle tested since 2012.

In October 2020, the library gained support for reading OMM data in XML or CSV form, for the

purpose of orbit propagation exclusively. Therefore, it has partial read support, since it ignores

the covariance matrix and other keys. On the other hand, to date it has no write support,

although, as explained below, an agreement on the API was reached and stated publicly.

Three changes were proposed to the library during the course of the analysis:

- “Raise error in export_tle if angles are invalid” #72 (Accepted) Consumers might end

up producing orbital element sets that, while correct, might contain out of range values. In

particular, TLEs assume that the angles have a value between 0 and 360 degrees (0 to

180 for the inclination), but before this change there was no validation taking place.

- “Fix export_tle for old satrec objects” #73 (Accepted) The TLE export was invalid in some

cases.

- “Add a export_omm function that produces a mapping containing all the OMM keys”

#65 (Deferred) Despite having the ability to load lists of XML and CSV OMMs,

python-sgp4 does not have the ability to export OMMs from its internal representation.

While working on the implementation, a roadblock was identified that the package

maintainer wanted to address personally, and therefore this capability is still missing.

Orekit (Apache 2.0)

Orekit is a broad space dynamics library written in Java, developed under an open governance

model. It has a wide range of applications, including (but not limited to) orbit propagation, frame

transformation, attitude computation, perturbation analysis, visualization, and more. It can be

integrated with other languages, like MATLAB and Python, although this setup is more complex.

It has full read support for all ODM formats (OMM, ODM and OEM) in KVN (key-value notation).

However, to the best of our knowledge , no support for XML read is present, and no support for 4

writing OMM files is available either.

4 The author of this report does not claim expertise on Java nor Orekit, and the conclusions here might be
misguided.

3

https://github.com/brandon-rhodes/python-sgp4/pull/72
https://github.com/brandon-rhodes/python-sgp4/pull/73/
https://github.com/brandon-rhodes/python-sgp4/issues/65#issuecomment-727240808

beyond (MIT)

beyond is a simple library for flight dynamics written in pure Python. It implements several

algorithms from widely known Astrodynamics textbooks, and it even contains an original

implementation of SGP4.

It has full read support for all ODM formats in KVN and XML, as well as full write support in both

formats. Thorough tests are included in the source code that cover this functionality. It is,

therefore, the most promising among the analyzed libraries.

python-satellitetle (MIT)

python-satellitetle is a Python package developed by the Libre Space Foundation that includes

functions to fetch TLEs from several sources. It contains a handful of predefined sources that

serve TLEs for satellites transmitting in radio amateur bands, and it also supports loading arbitrary

data from Space-Track.org.

At the moment, python-satellitetle does not have OMM read nor write support, but a complete

implementation is available at !25 waiting to be accepted in the repository. This contribution adds

full JSON and CSV read capabilities, as well as full XML and JSON write capabilities.

oacmpy (MIT)

oacmpy, also known as Ccsds2CZML, is a Python library focused on converting ODM formats to

CZML, a JSON subset used primarily by Cesium.js to describe time-dynamic scenes.

It has full support for all ODM formats in XML and KVN, but unfortunately no support for writing

those, apart from the aforementioned conversion to CZML.

ccsds_ndm (GPLv3)

ccsds_ndm was announced right after the first version of this report was delivered, and happens

to be a promising alternative. Its focus is to provide solely I/O capabilities for several Navigation

Data Messages (NDM) subformats, including OMM.

At the moment it has full support for XML, and both KVN and JSON are in the works.

4

https://gitlab.com/librespacefoundation/python-satellitetle/-/merge_requests/25

Conclusions and future work

Support for OMM and other ODM formats seems to be quite sparse in the open source

ecosystem. The fact that Celestrak has started to push for its adoption should serve as a

motivation to coalesce towards one canonical open source package to read and write them.

Among all the packages that were analyzed, beyond seems to be the most complete, while the

most widely used one, python-sgp4, probably will not gain full support for these formats any time

soon. Interestingly, beyond happens to have python-sgp4 as a dependency: being a seemingly

complete solution for reading and writing both TLEs and OMMs, perhaps it would be useful to

split that part into a separate, lower-level library that could be reused by other projects in the

ecosystem. However, the current implementation has some internal coupling with its other data

structures, and some discussion (or a fork) would be needed. We have not reached out to the

original author of beyond with these ideas yet.

On the other hand, ccsds_ndm was created recently with the explicit intent of providing a library

solely focused on NDM, including OMM. While at the moment only XML support is present, its

author has declared that KVN and JSON are also on the roadmap. Still, its GPLv3 license might

somewhat limit adoption in the broader ecosystem.

5

Summary

References

- Vallado, D. A., et al. "Revisiting spacetrack report# 3: rev 2. AIAA-2006-6753-Rev2. AIAA

Astrodynamics Specialists Conference and Exhibit. Keystone, CO: American Institute of

Aeronautics and Astronautics." (2006).

- Orbit Data Messages, Recommended Standard CCSDS 502.0-B-2, Consultative

Committee for Space Data Systems.

- “A New Way to Obtain GP Data (aka TLEs)”

https://celestrak.com/NORAD/documentation/gp-data-formats.php [Retrieved 2020-11-17].

- Vallado, David A. "Fundamentals of Astrodynamics and Applications, chapter 8." Space

Technology Library, (2013).

6

Name OMM read OMM write Notes

python-sgp4 XML, CSV In progress Only elements, no covariances or
metadata. JSON write in progress.

Orekit KVN Missing

beyond KVN, XML KVN, XML

python-satellitetl
e

In progress In progress JSON and CSV read in progress. XML
and JSON write in progress.

oacmpy KVN, XML Missing Only export to CZML.

ccsds-ndm XML XML Only non-permissively licensed library.
KVN and JSON in the roadmap.

https://celestrak.com/NORAD/documentation/gp-data-formats.php

Appendix: Excluded libraries

- orbitdeterminator https://github.com/aerospaceresearch/orbitdeterminator contains a

standalone implementation of SGP4 in Python (which is rare) but relies on python-sgp4 for

all the I/O.

- odmpy https://github.com/RazerM/odmpy contains a high quality implementation of OPM,

however the initial idea of adding OMM did not come to reality and the library was last

updated in 2014.

- oem https://github.com/bradsease/oem is maintained and contains a high quality

implementation of OEM, however OMM support does not seem to be within the scope of

the project.

7

https://github.com/aerospaceresearch/orbitdeterminator
https://github.com/RazerM/odmpy
https://github.com/bradsease/oem

