
 

OpenSatCom 
Development of Open Source 
tools for SatCom constellation 
analysis 
Second deliverable 

 
 
Author: Juan Luis Cano Rodríguez <hello@juanlu.space> 
Publication date: 2020-12-20 

Introduction 

Two-line Element Sets (TLEs), arguably the most popular exchange format for orbital information 

nowadays, are meant to be propagated with SGP4, one of the Simplified General Perturbations 

models published by the United States Department of Defense. This coupling between the two 

makes SGP4 arguably the most widely used analytical propagation algorithm. This method has 

several advantages: its source code has been publicly available for a very long time, and it offers 

a good tradeoff between running time and accuracy. 

As simulating and operating large satellite fleets have become more common, the need to make 

satellite propagation as fast as possible while retaining the accuracy of SGP4 has become more 

pressing. Simpler models, like ones considering only the oblateness of the Earth spheroid, are 

enough to retain some perturbation effects, but leaves out the orbit decay caused by the 

atmospheric drag as well as a big part of higher order effects. 

Orbit propagation is a sequential problem (equivalent to the resolution of an ordinary differential 

equation) and therefore it is not amenable to massive parallelization strategies at the algorithm 

level. However, propagating several satellites for several epochs is in itself a so-called 

“embarrasingly parallel” problem. 

   

1 



 

 

Overview 

As part of the Development of Open Source tools for SatCom constellation analysis, one of the 

sub-activities of the OpenSatCom initiative implemented by Libre Space Foundation and Inno3 

for the European Space Agency, the second proposed step was the “evaluation of available 

Python libraries for multi-satellite propagation”, which is described in this document. 

With this purpose, we selected several free/open source implementations of SGP4, mostly 

focused on the Python programming language, and benchmarked them in terms of running time. 

Selected implementations 

Because of time and skill limitations we were not able to include Orekit as part of the 

benchmarks. 

Selected use cases 

- One satellite, one date 

- One satellite, many dates 

- Many satellites, many dates 

1 In master branch or equivalent (applies to whole project) 
2 Forked to https://github.com/astrojuanlu/python-sgp4/tree/numpy-vectorization to change the name of 
the package 

2 

Name  Source code  License  Last commit  1

python-sgp4 
(pure Python & C++ wrapper 
of Vallado’s code) 

https://github.com/brandon-rhode
s/python-sgp4 

MIT  2020-xx-xx 

python-sgp4 
(NumPy vectorization) 

https://github.com/enritoomey/pyt
hon-sgp4/tree/master  2

MIT  2019-12-16 

python-sgp4 
(Numba JIT) 

https://github.com/astrojuanlu/pyt
hon-sgp4/tree/the-return-of-numb
a 

MIT  2020-12-07 

cysgp4 
(Cython wrapper of sgp4lib) 

https://github.com/bwinkel/cysgp
4 
 

GPLv3  2020-11-03 

https://github.com/astrojuanlu/python-sgp4/tree/numpy-vectorization
https://github.com/brandon-rhodes/python-sgp4
https://github.com/brandon-rhodes/python-sgp4
https://github.com/enritoomey/python-sgp4/tree/master
https://github.com/enritoomey/python-sgp4/tree/master
https://github.com/astrojuanlu/python-sgp4/tree/the-return-of-numba
https://github.com/astrojuanlu/python-sgp4/tree/the-return-of-numba
https://github.com/astrojuanlu/python-sgp4/tree/the-return-of-numba
https://github.com/bwinkel/cysgp4
https://github.com/bwinkel/cysgp4


 

 

For each use case, the preferred option of each project has been used instead of trying them all. 

For example, python-sgp4 provides Satrec.sgp4_array() method for arrays of dates and 

SatrecArray.sgp4() for arrays of satellites and dates. 

Benchmarks 

The source code of the benchmarks is available online: 

https://github.com/astrojuanlu/sgp4-benchmarks/tree/v2020.12.1 

And they have been reviewed by Brandon Rhodes, author of python-sgp4, and Benjamin Winkel, 

author of cysgp4. We appreciate their prompt response and their thoughtful suggestions. 

The benchmarks were run in two different systems: 

- A personal laptop 

 

- A dedicated cloud server 

And the results were plotted using the pytest-benchmark histogram plotting functionality. 

   

3 

CPU: Dual Core Intel Core i5-7200U (-MT MCP-) 
speed/min/max: 500/400/3100 MHz 
Kernel: 5.4.0-58-generic x86_64 
Up: 8h 49m 
Mem: 7668.9/15931.1 MiB (48.1%) 
Storage: 1.39 TiB (44.1% used) 
Procs: 291 
Shell: bash 5.0.17 
inxi: 3.0.38 

CPU: 2x 12-Core High Performance Datacenter vCPU (-MCP SMP-) 
speed: 2495 MHz 
Kernel: 5.4.0-37-generic x86_64 
Up: 5h 27m 
Mem: 532.4/96577.4 MiB (0.6%) 
Storage: 30.00 GiB (29.9% used) 
Procs: 293 
Shell: bash 5.0.16 
inxi: 3.0.38 

https://github.com/astrojuanlu/sgp4-benchmarks/tree/v2020.12.1
https://github.com/astrojuanlu/sgp4-benchmarks/issues/1


 

 

Results 

Single satellite, single date 

cysgp4 is the fastest in this case (1x), while the NumPy vectorized implementation happened to 

perform very poorly (+300x), even slower than the pure Python case (24x). The numba 

implementation showed the largest variance, and was slower (4x) than both cysgp4 and the 

Vallado C++ wrapper (2x). 

Results were similar in the dedicated server and are not included here. 

4 

 
Personal laptop, all implementations 

 
Personal laptop, NumPy vectorized excluded 



 

 

Single satellite, multiple dates 

We considered both a medium case with 101 dates and a large case with 10 100 dates. On the 

personal laptop the numba implementation was the fastest (1x), followed by the Vallado C++ 

wrapper (1.3x, 1.4x respectively), even though numba exhibited slightly larger standard deviation. 

The NumPy vectorized version performed better in the large case (9x, 1.8x) while cysgp4 was 

more consistent (3.5x, 2.5x). The pure Python version was 100x and 148x slower and is not 

displayed in the plots anymore. 

 

5 

 
Personal laptop, pure Python excluded 

 
Personal laptop, pure Python excluded 



 

 

On the dedicated server the results were quite different: the C++ wrapper and cysgp4 were the 

fastest for the medium and large cases respectively (1x and 1x) while numba lost the advantage in 

both (2x, 1.5x). numba happened to be the slowest in the large case (excluding the pure Python 

version) although the running times were all very similar, while cysgp4 performed rather slowly in 

the medium case (16x) and exhibited a large standard deviation. 

 

 

6 

 
Dedicated server, pure Python excluded 

 
Dedicated server, pure Python excluded 



 

 

Multiple satellites, multiple dates 

Similarly to the previous case, we considered both a medium case with 100 satellites and 101 

dates and a large case with 10 000 satellites and 10 100 dates. In all four combinations 

(medium/large, personal laptop/dedicated server) the fastest was the numba implementation (1x), 

with the pure Python version too slow to even be considered. On the personal laptop, the C++ 

wrapper was second (2.1x, 1.6x) and again the NumPy vectorized version performed better in the 

large case than in the medium case (18x, 3x) while cysgp4 was more consistent (3.5x, 3x). 

 

7 

 
Personal laptop, pure Python excluded 

 
Personal laptop, pure Python excluded 



 

 

On the dedicated server, cysgp4 is consistently second to numba, although noticeably slower 

(8.8x, 11x) while the C++ wrapper was third (9.6x, 15x) and again the NumPy vectorized version 

performed better in the large case than in the medium one, despite being the slowest one (84x, 

15.8x). 

 

 

8 

 
Dedicated server, pure Python excluded 

 
Dedicated server, pure Python excluded 



 

 

Conclusions and future work 

The results are very different depending on the architecture and the nature of the problem. 
For the simplest case of single satellite and single date, there is a very clear advantage of cysgp4 

(Cython) and the Vallado C++ wrapper, with numba offering a speedup over the pure Python 

version at the cost of very large compilation times. On the other extreme, for the multiple satellite 

multiple dates case, numba is the fastest option, and more so in machines with a large number of 

CPUs. In the middle, the results are more heterogeneous, and in particular it can be observed 

that the NumPy vectorized version performs much better the larger the problem is. 

Several lines of future work are suggested: 

Micro optimizations to the implementations 

Naturally, more work could be devoted to improving any of the existing implementations, by 

refactoring the code, exploring the effect of intermediate variables, inlining some operations… In 

particular, the numba compilation times were very large because there were over a hundred 

typed variables involved, most of which are intermediate results stored by the Vallado algorithm. 

Comparing RAM usage 

It was observed during the benchmarks that cysgp4 exhibited a distinct pattern in use of RAM. It 

would be interesting to add this information to the benchmarks as well, since it affects the sizing 

of the computational resources. 

More systematic comparison of running time vs problem size 

The chosen problem sizes were totally arbitrary, and in particular it was observed that the NumPy 

vectorized version exhibited much better results when the problem was large, going from 4th to 

3rd place in some rankings. On the other hand, although the running time should in principle be 

linearly proportional to the problem size and inversely proportional to the number of cores, this 

hypothesis was not tested at all, and surprising results could emerge as a result of overheads and 

other factors. 

Ad-hoc algorithm for satellite constellations 

Satellite constellations usually have very similar orbits, with significant differences only the right 

ascension of the ascending node and the argument of latitude. This fact could be exploited by 

9 



 

 

caching some of the intermediate calculations of SGP4 and accelerating the propagation of 

multiple satellites. 

Inclusion of non-Python projects 

Python was chosen because of familiarity, its pervasiveness in the open source ecosystem, the 

availability of benchmarking tools, and the ease of installation. However, more projects could be 

included in the benchmarks, in particular Orekit, which was left out from this analysis.  

Summary 

 

 

 

10 

  Personal laptop  Dedicated server 

Single satellite, single date  cysgp4, C++ wrapper  cysgp4, C++ wrapper 

Single satellite, multiple dates  numba, C++ wrapper  ? 

Multiple satellites, multiple dates  numba, C++ wrapper  numba, cysgp4 


